
Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for readability
only, the indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example

Python will give you an error if you skip the indentation:

Example

The number of spaces is up to you as a programmer, the most common use is
four, but it has to be at least one.

Example

if 5 > 2:
 print("Five is greater than two!")
if 5 > 2:
 print("Five is greater than two!")

You have to use the same number of spaces in the same block of code,
otherwise Python will give you an error:

Example

Syntax Error:

if 5 > 2:
 print("Five is greater than two!")
 print("Five is greater than two!")

Python Variables

In Python, variables are created when you assign a value to it:

Example:- save file hello.py with following code.

Variables in Python:

And in terminal type to see output as shown below:-

Comments

Python has commenting capability for the purpose of in-code documentation.

Comments start with a #, and Python will render the rest of the line as a

comment:

Example

Comments in Python:

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can do different

things.

Python has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType

Getting the Data Type

You can get the data type of any object by using the type() function:

Example

Print the data type of the variable x:

x = 5
print(type(x))

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

Save file hello.py and run it in terminal

#list example

thislist = ["apple", "banana", "cherry"]

print(thislist)

#tuple example

thistuple = ("apple", "banana", "cherry")

print(thistuple)

#set example

thisset = {"apple", "banana", "cherry"}

print(thisset)

#discitonary example

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict)

#array example

cars = ["Ford", "Volvo", "BMW"]

print(cars)

output:-

String data type example:-

Integer data type example :-

Float data type example :-

Python Casting

Specify a Variable Type

There may be times when you want to specify a type on to a variable. This can

be done with casting. Python is an object-orientated language, and as such it

uses classes to define data types, including its primitive types.

Casting in python is therefore done using constructor functions:

 int() - constructs an integer number from an integer literal, a float literal

(by removing all decimals), or a string literal (providing the string

represents a whole number)
 float() - constructs a float number from an integer literal, a float literal

or a string literal (providing the string represents a float or an integer)
 str() - constructs a string from a wide variety of data types, including

strings, integer literals and float literals

Integers example:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Floats example :

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

Strings example:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Strings

Strings in python are surrounded by either single quotation marks, or double

quotation marks.

'hello' is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello")

print('Hello')

Python Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

print(10 + 5)

Python divides the operators in the following groups:

 Arithmetic operators
 Assignment operators

 Comparison operators
 Logical operators

 Identity operators
 Membership operators

 Bitwise operators

