
React Components 
Components are like functions that return HTML elements. 

 

React Components 

Components are independent and reusable bits of code. They serve the same 

purpose as JavaScript functions, but work in isolation and return HTML. 

Components come in two types, Class components and Function components, in 

this tutorial we will concentrate on Function components. 

In older React code bases, you may find Class components primarily used. It is 

now suggested to use Function components along with Hooks, which were 
added in React 16.8. There is an optional section on Class components for your 
reference. 

 

Create Your First Component 

When creating a React component, the component's name MUST start with an 

upper case letter. 

Class Component 

A class component must include the extends React.Component statement. This 

statement creates an inheritance to React.Component, and gives your 
component access to React.Component's functions. 

The component also requires a render() method, this method returns HTML. 

Example 

Create a Class component called Car:- 

 



class Car extends React.Component { 
  render() { 
    return <h2>Hi, I am a Car!</h2>; 
  } 
} 
 

Function Component 

Here is the same example as above, but created using a Function component 

instead. 

A Function component also returns HTML, and behaves much the same way as a 

Class component, but Function components can be written using much less 
code, are easier to understand, and will be preferred in this tutorial. 

Example 

Create a Function component called Car 

function Car(props) { 
  return <h2>I am a {props.color} Car!</h2>; 
} 
 

 

Rendering a Component 

Now your React application has a component called Car, which returns 

an <h2> element. 

To use this component in your application, use similar syntax as normal 

HTML: <Car /> 

Example 

Display the Car component in the "root" element: 

const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Car />); 
 

 



Example   of class component:- 

 

Display the Car component in the "root" element: 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
 
class Car extends React.Component { 
  render() { 
    return <h2>Hi, I am a Car!</h2>; 
  } 
} 
 
ReactDOM.render(<Car />, document.getElementById('root')); 
 

Output:- 

Hi, I am a Car! 

 

Example   of function component:- 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
 
function Car() { 
  return <h2>Hi, I am a Car!</h2>; 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Car />); 
 

output :- 

Hi, I am a Car! 

 



Components in Components 

We can refer to components inside other components: 

Example 

Use the Car component inside the Garage component: 

 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
 
function Car() { 
  return <h2>I am a Car!</h2>; 
} 
 
function Garage() { 
  return ( 
    <> 
     <h1>Who lives in my Garage?</h1> 
     <Car /> 
    </> 
  ); 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Garage />); 
 

 

output:- 

Who lives in my Garage? 

I am a Car! 

 

 



Components in Files 

React is all about re-using code, and it is recommended to split your 
components into separate files. 

To do that, create a new file with a .js file extension and put the code inside it: 

Note that the filename must start with an uppercase character. 

Example 

This is the new file, we named it "Car.js": 

function Car() { 
  return <h2>I am a Car!</h2>; 
} 
 
export default Car; 

To be able to use the Car component, you have to import the file in your 
application. 

Example 

Now we import the "Car.js" file in the application, and we can use 

the Car component as if it was created here. 

 

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
import Car from './Car.js'; 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Car />); 
 

output:- 

Hi, I am a Car! 

 


