Counter
Mathematics Dictionary
Dr. K. G. Shih

Mathematical Induction
Subject


  • AL 14 00 | - Outlines
  • AL 14 01 | - Definiton
  • AL 14 02 | - Sum[n*(n+1)/2] = n*(n+1)*(n+2)/6
  • AL 14 03 | - Sum[n^2] = n*(n+1)*(2*n+1)/6
  • AL 14 04 | - Sum[n^3] = ((n*(n+1))/2)^2
  • AL 14 05 | - 1/(1*2) + 1/(2*3) + ..... + 1/(n*(n+1)) = 1 - 1/(n+1)
  • AL 14 06 | - Sum[1/((2*n-1)*(2*n+1)) = (1 - 1/(2*n+1))/2
  • AL 14 07 | - Sum[1/(n*(n+1)*(n+2)] = n*(n+3)/(4*(n+1)*(n+2)
  • AL 14 08 | - Sum[(2*n-1)^2] = n*(4*n^2 - 1)/3
  • AL 14 09 | - Sum[n*((n+1)^2)] = n*(n+1)*(n+2)*(3*n+5)/12
  • AL 14 10 | - S(n) = (1 -4/1)*(1 - 4/9)*(1 - 4/25)*(1 - 4/49)*......
  • AL 14 11 | - S(n) = (1 + 1)*(1 + 1/2)*(1 + 1/3)*.....*(1 + 1/n) = n + 1
  • AL 14 12 | - S(n) = (1^2)/(1*3) + (2^2)/(3*5) + (3^2)/(5*7) + .... = (n*(n+1))/(2*(2*n+1))
  • AL 14 13 | - Is this series S(n) = 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2 true ?
  • AL 14 14 | - Is S(n) = n^2 + n + 41 always a prime number ?
  • AL 14 15 | - Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
  • AL 14 16 | - Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6
  • AL 14 17 | - Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)

  • Answers


    AL 14 01. Defintion

    Induction method

    Go to Begin

    AL 14 12. S(n) = (1^2)/(1*3) + (2^2)/(3*5) + (3^2)/(5*7) + .... = (n*(n+1))/(2*(2*n+1))

    Test 1
    • S(1) = (1^2)/(1*3) = 1/3 and RHS = 1*(1 + 1)/(2*(2*1 + 1) = 1/3. It is true
    • S(2) = 1/3 + (2^2)/(3*5) = 3/5 and RHS = 2*(2+1)/(2*(2*2+1) = 3/5. It is true
    • S(3) = 3/5 + (3^2)/(5*7) = 6/7 and RHS = 3*(3+1)/(2*(2*3+1) = 6/7. It is true
    • Hence test 1 is correct
    Test 2 : Add T(n+1) to both sides and expect ((n+1)*(n+2))/(2*(2*(n+1)+1))
    • T(n) = (n^2)/((2*n-1)*(2*n+1))
    • T(n+1) = ((n+1)^2)/((2*n+1)*(2*n+3))
    • RHS = (n*(n+1))/(2*(2*n+1)) + ((n+1)^2)/((2*n+1)*(2*n+3))
    • RHS = (n*(n+1)*(2*n+3) + 2*(n+1)^2)/(2*(2*n+1)*(2*n+3))
    • RHS = ((n+1)*(n+2)*(2*n+1))/(2*(2*n+1)*(2*n+3))
    • RHS = ((n+1)*(n+2)/(2*(2*n+3))
    • Hence Test 2 is also correct

    Go to Begin

    AL 14 13. Is this series 2 + 4 + 6 + ..... + 2*n = (n + 1/2)^2 true ?

    Part 1 test
    • n = 1 : LHS = 2 and RHS = (1.5)^2 = 2.25
    • Hence test 1 not true
    Part 2 test
    • RHS = (n + 1/2)^2 + 2*(n + 1)
    • RHS = n^2 + n + 1/4 + 2*n + 2
    • RHS = n^2 + 3*n + 9/4
    • RHS = (n + 3/2)^2
    • RHS = ((n + 1) + 1/2)^2
    • Hence test 2 is true
    Conclusion
    • Since test 1 is not true, Hence the sum of this series is not for all numbers

    Go to Begin

    AL 14 14. Is S(n) = n^2 + n + 41 always a prime number ?

    Test 1
    • n = 1, S(1) = 1 + 1 + 41 = 43 and it is a prime
    • n = 2, S(2) = 4 + 2 + 41 = 47 and it is a prime
    • n = 3, S(3) = 9 + 3 + 41 = 53 and it is a prime
    • Test 1 is true
    Test 2
    • S(n) = n*(n + 1) + 41
    • S(40) = 40*(40 + 1) + 41 = 40*41 + 41 = 41*(40 + 1) = 41^2
    • Hence it is not a prime if n = 40
    Conclusion
    • Since test 2 is not true, hence S(n) is not always a prime
    Note : We can also use n = 41
    • S(n) = n*(n + 1) + 41
    • S(41) = 41*(41+1) + 41 = 41*42 + 41 = 41*(42 + 1) = 41*43
    • Hence it is not prime if n = 41

    Go to Begin

    AL 14 15. Prove that ((n^3) + 3*(n^2) + n)/3 is an integer
    Keyword
    • Series : Sum[n*(n+1)/2] = n*(n+1)*(n+2)/6
    Proof
    • ((n^3) + 3*(n^2) + n)/3 = n*(n+1)*(n+2)/3
    • Sum[n*(n+1)/2] = n*(n+1)*(n+2)/6 is integer
    • Hence ((n^3) + 3*(n^2) + n)/3 = 2*Sum[n*(n+1)/2] and it is integer

    Go to Begin

    AL 14 16. Prove that (2*(n^3) + 3*(n^2) + n) is divisible by 6

    Prove that 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1) Keyword
    • Series : Sum[n^2] = n*(n+1)*(2*n+1)/6
    Proof
    • (2*(n^3) + 3*(n^2) + n) = n*(n+1)*(2*n+2)
    • Sum[n^2] = n*(n+1)*(2*n+1)/6 is integer
    • Hence (2*(n^3) + 3*(n^2) + n)/3 = 6*sum[n^2] and it is divisble by 6
    Similar Question
    • Is (2*(n^3) + 3*(n^2) + n)/6 always an integer ?

    Go to Begin

    AL 14 17. Prove that S(n) = 1! + 2! + 3! + 4! + ..... + n! = 3^(n-1)

    Induction test 1
    • n = 1 : LHS = 1 and RHS = 3^0 = 1. It is true
    • n = 2 : LHS = 1+2 = 3 and RHS = 3^1 = 3. It is true
    • n = 3 : LHS = 1+2+6 = 9 and RHS = 3^2 = 9. It is true
    • Test 1 is true
    Test 2
    • n = 4 : LHS = 1 + 2 + 6 + 24 = 33 and RHS = 3^3 = 27. It is not true
    • Hence we do not need to add T(n+1) = (n+1)! to both sides
    Conclusion
    • Hence the S(n) = 3^(n-1) is not True

    Go to Begin

    AL 14 18. Prove that S(n) = (1 + 3/1)*(1 + 5/4)*(1 + 7/9) + ..... = (n+1)^2

    Induction test 1
    • n = 1 : LHS = 4 and RHS = (1+1)^2 = 4. It is true
    • n = 2 : LHS = 4*(9/4) = 9 and RHS = (2+1)^2 = 9. It is true
    • n = 3 : LHS = 9*(16/9) = 16 and RHS = (4+1)^2 = 16. It is true
    • Test 1 is true
    Test 2
    • T(n) = 1 + (2*n+1)/(n^2)
    • Multiply T(n+1) = (1 + (2*n+3)/((n+1)^2))
    • We expect S(n+1) = (n+2)^2
      • RHS = ((n+1)^2)*(1 + (2*n+3)/((n+1)^2)
      • RHS = (n+1)^2 + (2*n+3)
      • RHS = n^2 + 2*n + 1 + 2*n + 3
      • RHS = n^2 + 4*n + 4
      • RHS = (n+2)^2
    • Test 2 is true
    Conclusion
    • Hence the S(n) = 3^(n-1) is not True

    Go to Begin

    AL 14 00. Outines

    Induction method

    Show Room of MD2002 Contact Dr. Shih Math Examples Room

    Copyright © Dr. K. G. Shih, Nova Scotia, Canada.

    Hosted by www.Geocities.ws

    1