Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 309 : Ellipse in rectangular form

  • Q01 | - Diagram : Ellipse in rectangular form
  • Q02 | - Compare (x/5)^2 + (y/3)^2 = 1 with (x/3)^2 + (y/5)^2 = 1
  • Q03 | - Find equation of directrix of (x/5)^2 + (y/3)^2 = 1
  • Q04 | - Find equation of directrix of (x/3)^2 + (y/5)^2 = 1
  • Q05 | - Convert (x/a)^2 + (y/b)^2 = 1 to polar form
  • Q06 | - Convert (x/5)^2 + (y/3)^2 = 1 to polar form
  • Q07 | - Reference


Q01. Diagram : Ellipse in rectangular form with principal axis x = k


Go to Begin

Q02. Compare (x/5)^2 + (y/3)^2 = 1 with (x/3)^2 + (y/5)^2 = 1

Equation (x/5)^2 + (y/3)^2 = 1
  • 1. Principal axis y = 0
  • 2. Semi-axese a = 5 and b = 3
  • 3. Focal length f = Sqr(a^2 + b^2) = 4
  • 4. Vertices U(-5, 0) and V(+5, 0)
  • 5. Foci F(-4, 0) and G(4, 0)
  • 6. Equation of directrix
    • x = -4 - D, or
    • x = +4 + D
  • 7. Polar form
    • R = D*e/(1 - e*cos(A)), or
    • R = D*e/(1 + e*cos(A))
Equation (x/3)^2 + (y/5)^2 = 1
  • 1. Principal axis x = 0
  • 2. Semi-axese a = 5 and b = 3
  • 3. Focal length f = Sqr(a^2 + b^2) = 4
  • 4. Vertices U(0, -5) and V(0, +5)
  • 5. Foci F(0, -4) and G(0, 4)
  • 6. Equation of directrix
    • y = -4 - D or
    • y = +4 + D
  • 7. Polar form
    • R = D*e/(1 - e*sin(A)), or
    • R = D*e/(1 + e*sin(A))

Go to Begin

Q03. Find equation of directrix of (x/5)^2 + (y/3)^2 = 1

Corresponding polar form
  • 1. Focus F is origin : Left side
    • R = (D*e)/(1 - e*cos(A))
    • (x/a)^2 + (y/b)^2 = 1
  • 2. Focus G is origin : Right hand side
    • R = (D*e)/(1 + e*cos(A))
    • (x/a)^2 + (y/b)^2 = 1
At left side vetex
  • FU = a - f
  • R = a - f
  • Angle A = 180 and R = (D*e)/(1 - e*cos(180))
  • Since cos(180) = -1
  • Hence (a - f) = (D*e)/(1 + e)
  • Hence D = (a - f)*(1 + e)/e
  • Or D*e = (a^2 - f^2)/a
  • For (x/a)^2 + (y/b)^2 = 1
    • Center at (0, 0)
    • Focus F at (-f, 0)
  • Hence equation of directrix : x = -f - D
At left side vetex
  • FV = a + f
  • R = a + f
  • Angle A = 0 and R = (D*e)/(1 - e*cos(0))
  • Since cos(0) = 1
  • Hence (a + f) = (D*e)/(1 - e)
  • Hence D = (a + f)*(1 - e)/e
  • Or D*e = (a^2 - f^2)/a
  • For (x/a)^2 + (y/b)^2 = 1
    • Center at (0, 0)
    • Focus F at (-f, 0)
  • Hence equation of directrix : x = -f + D

Go to Begin

Q04. Find equation of directrix of (x/3)^2 + (y/5)^2 = 1

Corresponding polar form
  • 1. Focus F is origin : Left side
    • R = (D*e)/(1 - e*sin(A))
    • (x/3)^2 + (y/5)^2 = 1
  • 2. Focus G is origin : Right hand side
    • R = (D*e)/(1 + e*sin(A))
    • (x/3)^2 + (y/5)^2 = 1
At top side vetex
  • FU = a - f
  • R = a - f
  • Angle A = 90 and R = (D*e)/(1 + e*sin(0))
  • Since sin(90) = 1
  • Hence (a - f) = (D*e)/(1 + e)
  • Hence D = (a - f)*(1 + e)/e
  • Or D*e = (a^2 - f^2)/a
  • For (x/a)^2 + (y/b)^2 = 1
    • Center at (0, 0)
    • Focus F at (0, +f)
  • Hence equation of directrix : y = f + D
At bottom vetex
  • FV = a + f
  • R = a + f
  • Angle A = 270 and R = (D*e)/(1 + e*sin(270))
  • Since sin(270) = -1
  • Hence (a + f) = (D*e)/(1 - e)
  • Hence D = (a + f)*(1 - e)/e
  • Or D*e = (a^2 - f^2)/a
  • For (x/a)^2 + (y/b)^2 = 1
    • Center at (0, 0)
    • Focus F at (0, -f)
  • Hence equation of directrix : y = -f - D

Go to Begin

Q05. Convert (x/a)^2 + (y/b)^2 = 1 to polar form

Method 1 : Find D and e
  • Corresponding form
    • R = (D*e)/(1 - e*cos(A)) : The center at (f, 0)
    • ((x - f)/a)^2 + (y/b)^2 = 1 : The center at (f, 0)
    • (x/a)^2 + (y/b)^2 = 1 : The center at (0, 0)
  • Since the translation from (0, 0) to (f, 0), the diagram is no change
  • Hence we know that the polar form is R = (D*e)/(1 - e*cos(A))
Method 2 : Use polar coordinates
  • R = D*e/(1-e*cos(A))
    • The focal point is at F(0, 0)
    • The center is at (f, 0)
    • Hence rectangular form is ((x - f)/a)^2 + (y/b)^2 = 1
  • Remove denominator and simplify
    • (b^2)*(x + f)^2 + (a^2)*(y^2) = (a^2)*b*2.
    • (b^2)*(x^2) + (b^2)*x*f + (b^2)*(f^2) + (a^2)*(y^2) = (a^2)*(b^2)
    • Since b^2 = a^2 - f^2.
    • Hence (b^2)*(x^2) + (a^2)*(y^2) + 2*(b^2)*x*f = (a^2)*(b^2) - (b^2)*(f^2)
    • (a^2 - f^2)*(x^2) + (a^2)*(y^2) + 2*(b^2)*x*f = (b^2)*(a^2 - f^2)
  • Polar coordiantes
    • x = R*cos(A)
    • y = R*sin(A)
    • R^2 = x^2 + y^2
  • Substitute polar coordinates into above equation
    • (x^2 + y^2)*(a^2) - (f^2)*(x^2) + 2*(b^2)*x*f = b^4
    • (R^2)*(a^2) - (f^2)*(x^2) + 2*(b^2)*x*f - b^4 = 0
    • (R^2)*(a^2) - ((f^2)*(x^2) - 2*(b^2)*x*f + b^4)
    • (R^2)*(a^2) - (f*x - b^2)^2 = 0
    • R*a = f*x - b^2
  • Since x = R*cos(A)
  • Hence R*a - R*f*cos(A) = b^2
  • R*(a - f*cos(A)) = b^2
  • R*(1 - f*cos(A)/a) = (b^2)/a
  • Since e = f/a and D*e = (b^2)/a
  • Hence R = (D*e)/(1 - e*cos(A))

Go to Begin

Q06. Convert (x/5)^2 + (y/3)^2 = 1 to polar form

Method 1 : Find D and e
  • The polar form is R = (D*e)/(1 - e*cos(A))
  • Since f = Sqr(a^2 - b^2) = 4
  • Also D*e = (a - f)*(1 + e) = (a^2 - f^2)/a = (b^2)/a
  • a = 5 and b = 3
  • e = f/a = 4/5 = 0.8
  • D*e = (5 - 4)*(1 + 0.8) = 1.8
  • R = 1.8/(1 - 0.8*cos(A))
Method 2 : Use polar coordinates
  • Since center of R = (D*e)/(1 - e*cos(A)) is at (f, 0)
  • We must use equation ((x - f)/a)^2 + (y/b)^2 = 1
  • Since f = Sqr(a^2 - b^2) = 4
  • Hence 9*(x - 4)^2 + 25*(y^2) = 225
  • 9*(x^2) - 72*x + 9*14 + 25*(y^2) = 225
  • Change coefficient of x^2 same as y^2
    • 25*x^2 - 16*x^2 - 72*x + 25*(y^2) = 81
    • 25*(x^2 + y^2) = 16*(x^2) + 72*x + 81
  • Since R^2 = x^2 + y^2
  • Hence 25*(R^2) = (4*x + 9)^2
  • Take square root on both sides : 5*R = 4*x + 9
  • R = 0.8*x + 1.8
  • Since x = R*cos(A)
  • Hence R = 0.8*R*cos(A) + 1.8
  • The answer is R = 1.8/(1 - 0.8*cos(A))

Go to Begin

Q07. Reference

Reference

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

Hosted by www.Geocities.ws

1