Counter
Mathematics Dictionary
Dr. K. G. Shih

Figure 310 : Ellipse in Polar form

  • Q01 | - Diagram : Ellipse in Polar form
  • Q02 | - Find ellipse in polar form
  • Q03 | - Convert R = (D*e)/(1 - e*cos(A)) to rectangular form
  • Q04 | - Convert R = 1.8/(1 - 0.8*cos(A)) to rectangular form
  • Q05 | - Reference


Q01. Diagram :


Go to Begin

Q02. Find ellipse in polar form

Solution
  • Let origin be at F(0,0)
  • Point P(x, y) on ellipse
  • Point P to directrix is PQ = D + x
  • PF = R and x = r*cos(A)
  • Defintion : PF/PQ = e
  • R/(D + x) = e
  • R = e*(D + x) = e*(D + R*cos(A))
  • Hence R*(1 - e*cos(A)) = D*e
  • Hence R = (D*e)/(1 - e*cos(A)) and e is less than 0
Ellipse in polor form
  • 1. R = (D*e)/(1 - e*cos(A)) : Origin at left focus
  • 2. R = (D*e)/(1 + e*cos(A)) : Origin at right focus
  • 3. R = (D*e)/(1 - e*sin(A)) : Origin at bottom focus
  • 4. R = (D*e)/(1 + e*sin(A)) : Origin at top focus
Find D : Relation between polar and rectangular forms
  • Compare diagrams of R = (D*e)/(1 - e*cos(A)) with (x/a)^2 + (y/b)^2 = 1
  • When A = 180 degrees and cos(180) = -1
    • R = FU = a - f
    • R = (D*e)/(1 + e)
  • Hence R = (D*e)/(1 + e) = a - f
  • Hence D*e = (a - f)*(1 + e)
  • Since e = f/a
  • Hence D*e = (a^2 - f^2)/a

Go to Begin

Q03. Convert R = (D*e)/(1 - e*cos(A)) to rectangular form

Solution : Use D
  • The corresponding form
    • Rectangular form : ((x - f)/a)^2 + (y/b)^2 = 1
    • Polar form : R = (D*e)/(1 - e*cos(A))
  • Since center at (0, 0) : (x/a)^2 + (y/b)^2 = 1 ........... (1)
  • Center at (f, 0) : ((x - f)/a)^2 + (y/b)^2 = 1 ........... (2)
  • Polar form center at (f, 0) : R = (D*e)/(1 - e*cos(A)) .. (3)
  • Since (1) and (2) give congruent diagram
  • Hence we can translate center from (1) to (2)
  • From (2) and (3), we see that (2) is the answer is the answer
  • Also (1) is the answer
Solution : Use polar coordinate, b^2 = a^2 - f^2 and D*e = b^2/a
  • R = D*e/(1 - e*cos(A))
  • R*(1 - e*cos(A)) = D*e
  • R - e*R*cos(A) = D*e
  • R = D*e + e*x
  • Since D*e = (b^2)/a and e = f/a
  • Hence R = (b^2)/a + f*x/a
  • Or a*R = b^2 + x*f
  • Square both sides
  • (a^2)*(R^2) = (b^2 + x*f)^2
  • (a^2)*(R^2) = b^4 + 2*(b^2)*x*f + (x^2)*(f^2)
  • (a^2)*(x^2 + y^2) - 2*(b^2)*x*f - (x^2)*(f^2) = b^4
  • (a^2)*(x^2) + (a^2)*(y^2) - 2*(b^2)*x*f - (x^2)*(f^2) = b^4 .......... (1)
  • Since b^2 = a^2 - f^2, (1) becomes
  • (a^2 - f^2)*(x^2) + (a^2)*(y^2) - 2*(b^2)*x*f = (b^2)*(a^2 - f^2)
  • (b^2)*(x^2 - 2*x*f + f^2) + (a^2)*(y^2) = (b^2)*(a^2) ............... (2)
  • (b^2)*(x - f)^2 + (a^2)*(y^2) = (a^2)*(b^2)
  • Divide both sides by (a^2)*(b^2)
  • ((x - f)/a)^2 + (y/b)^2 = 1

Go to Begin

Q04. Convert R = 1.8/(1 - 0.8*cos(A)) to rectangular form

Solution : Use D*e = (a^2 - f^2)/a = (b^2)/a and e = f/a
  • The corresponding form
    • ((x - f)/a)^2 + (y/b)^2 = 1
    • (x/a)^2 + (y/b)^2 = 1
    • R = (D*e)/(1 - e*cos(A))
  • For R = 1.8/(1 - 0.8*cos(A))
    • e = 0.8
    • D*e = 1.8 and D = 2.25
    • e = f/a and f = 0.8*a ...... (1)
    • D*e = (a^2 - f^2)/a
    • 1.8*a = (a^2 - f^2) ........ (2)
    • Substitute (1) into (2), we have
    • 1.8*a = (a^2 - (0.8*a)^2)
    • 1.8*a = 0.36*a^2
    • a*(1.8 - 0.36*a) = 0
    • Hence a = 0 or a = 1.8/0.36 = 5
  • Substitute a = 5 into (1), Hence f = 4
  • Since f^2 = a^2 - b^2
  • Hence b^2 = a^2 - f^2 = 25 - 16 = 9
  • Hence b = 3
  • Hence equarion is (x/5)^2 + (y/3)^2 = 1
  • General solution : ((x - h)/a)^2 + ((y - k)/b)^2 = 1
Use polar coordinate
  • R = 1.8/(1 - 0.8*cos(A))
  • R*(1 - 0.8*cos(A)) = 1.8
  • Since R^2 = x^2 + y^2 and x = R*cos(A)
  • Hence R - 0.8*x = 1.8 or R = 1.8 + 0.8*x ......... (1)
  • Square both sides of (1)
  • x^2 + y^2 = 1.8^2 + 2*1.8*0.8*x + 0.64*x^2
  • Simply 0.36*x^2 - 2.88*x + y^2 = 3.24 ............ (2)
  • Use completing the square, (2) becomes
  • 0.36*(x^2 - 8*x + 16 - 16) + y^2 = 3.24
  • 0.36*(x - 4)^2 + y^2 = 3.24 + 0.36*16
  • 0.36*(x - 4)^2 + y^2 = 9
  • ((x - 4)/5)^2 + (y/3)^2 = 1

Go to Begin

Q05. Reference

Reference

Go to Begin

Show Room of MD2002 Contact Dr. Shih Math Examples Room

Copyright © Dr. K. G. Shih. Nova Scotia, Canada.

Hosted by www.Geocities.ws

1